
Designing a Framework for the Development
of Domain-Specific Process Modelling

Languages

Sven Jannaber1(&), Dennis M. Riehle2, Patrick Delfmann3,
Oliver Thomas1, and Jörg Becker2

1 Institute for Information Management and Information Systems,
University of Osnabrück, Osnabrück, Germany

{sven.jannaber,oliver.thomas}@uni-osnabrueck.de
2 European Research Center for Information Systems,

University of Münster, Münster, Germany
{dennis.riehle,joerg.becker}@ercis.uni-muenster.de

3 Institute for Information Systems Research,
University of Koblenz-Landau, Koblenz, Germany

delfmann@uni-koblenz.de

Abstract. Domain-specific process modelling has gained increased attention,
since traditional modelling languages struggle to meet the demands of highly
specialized businesses. However, methodological support on the development of
such domain-specific languages is still scarce, which hampers the specification
of adequate modelling support. To this end, the paper applies a design-oriented
research approach to create an integrated framework that facilitates the devel-
opment of domain-specific process modeling languages. The framework is a
result of 23 consolidated requirements from relevant literature and contains
essential building blocks that need to be considered during the development
process. It is demonstrated that the framework satisfies the identified require-
ments by structuring and systematizing the development of domain-specific
languages, which increases language adequacy and quality.

Keywords: Business process management � Domain-specific process
modelling � Framework � Modelling language development

1 Introduction

Business Process Management (BPM) has become increasingly important in today’s
enterprise due to the high complexity of organizational operations. It is widely
acknowledged in research and practice that sophisticated BPM effort in organizations is
closely tied to increased operational performance [1]. Crucial prerequisite for any
successful BPM endeavor is the identification and documentation of business pro-
cesses, which represent one of the main success factors for companies [2]. For this
purpose, business process modelling languages (BPMLs) have emerged that provide a
variety of concepts and constructs to represent these organizational processes as
semi-formal process models.

© Springer International Publishing AG 2017
A. Maedche et al. (Eds.): DESRIST 2017, LNCS 10243, pp. 39–54, 2017.
DOI: 10.1007/978-3-319-59144-5_3



However, traditional BPMLs suffer from severe shortcomings: Nowadays, common
process modelling standards struggle to meet the requirements of highly diversified and
specialized businesses. Studies indicate that especially niche domains grow more and
more unsatisfied with generic languages, since they do not integrate domain knowledge
[3, 4], Naturally, this issue translates to the end-users, who continue to rely on common
visualization software (e.g. Microsoft PowerPoint) rather than on sophisticated mod-
elling suites and traditional languages for process modelling [5]. Recently, domain-
specific process modelling Languages (DSPMLs) have gained increased attention,
which are designed to address the outlined shortcoming by capturing the needs of
specific domains. By adapting, for instance, the level of abstraction, the terminology or
the available subset of modelling elements to the needs of a specific application domain,
DSPMLs significantly contribute a successful application of BPM. However, method-
ological support and guidance regarding the development of DSPMLs is still scarce.
Although the creation domain-specific languages (DSL) are an already matured topic in
computer science (e.g. [6]), insights have not yet been fully transferred to the BPM
domain, which is a crucial gap considering the growing importance of DSPMLs with
respect to the increasing specialization of business models and new emerging technol-
ogy [7]. In BPM literature, DSPMLs have primarily been addressed from an application
point of view, while neglecting conceptual design and development [8]. Hence, a
structural view on DSPML building blocks and development can be seen as a first step to
systematize modelling language development towards current and future demands.

To this end, the paper at hand aims at structuring and ultimately systematizing the
development process of future-proof DSPMLs. For this purpose, a design-centered
research methodology is applied in order to develop a DSPML framework as main IT
artifact of this contribution. The framework consists of major building blocks deducted
from insights of a literature review that need to be considered when designing or
modifying process modelling languages towards specific business demands. Addi-
tionally, the building blocks are aligned in a way that highlights the interdependencies
of the language constructs and concepts in order to shed light on the inner core of
modelling languages. The DSPML framework supports language designers in research
and practice by providing a comprehensive overview over a DSPMLs inner structure as
a starting point for language development.

This paper is structured as follows: Succeeding the introduction, a brief outline on
topic fundamentals is given in Sect. 2, followed by details on the applied research
methodology in Sect. 3. The IS artifact design of this paper is presented in Sect. 4.
First, the artifact’s design requirements are deducted from the results of a structured
literature review. Second, the DSPML framework is introduced as main outcome of
this paper. Third, the artifact is being evaluated against the identified requirements. The
paper concludes with a discussion and a summary of the findings in Sect. 5.

2 BPM and Domain-Specific Process Modelling

BPM is about “concepts, methods, and techniques to support the design, administra-
tion, configuration, enactment, and analysis of business processes” [9] (p. 5). One core
concept of BPM is the representation of business processes in form of semi-formal

40 S. Jannaber et al.



process models. While traditionally process models have primarily been used for mere
process documentation and knowledge sharing, models nowadays are being processed
by sophisticated algorithms for process intelligence or process mining. Due to their
semantic formalization, process models can also include several technical details and
thus be directly translated into executable workflows. The way a process model is
structurally created and visually notated is called business BPML. Due to the different
objectives and purposes that process models can be created for, there exist a large
variety of BPMLs. An overview can be found in [10] or [11]. In literature, BPMLs
have been heavily featured, resulting in numerous application scenarios across different
domains and multiple extensions to enrich their expressiveness towards new demands
and domains [12, 13]. Some of the most popular BPMLs are the Business Process
Model and Notation (BPMN), for which a full specification is available by [14], and the
Event-driven Process Chains (EPC). Typically, BPMLs come alongside with modeling
instructions, e.g. [15], modeling frameworks or reference architectures, such as SOM,
MEMO or icebricks, for which a comparison can be found in [16].

While traditional standardized languages such as BPMN are widely-used, they
provide rather generic constructs for process modelling, since those languages are
intended to be generally applicable, i.e., they can be used to create process models for
all kind of organizations independent of their domain. This purpose differs from
DSPMLs, which focus on particular application domains and, by introducing
domain-specific concepts, specifically integrate domain knowledge required to capture
the highly specialized business processes of that domain. Therefore, DSPMLs directly
contribute to model quality, model integrity and efficiency of process modelling [6, 17].
An example for a DSPML is PICTURE, which is used in BPM projects in the public
administration domain and provides 24 pre-defined process bricks. Each brick
describes an standard activity in public administration [18]. Hence, typical business
processes of that domain can be captured more closely than with traditional languages.
According to [18], PICTURE, on the one hand, is designed to represent complex
administration processes that involve several different departments, while on the other
hand, through its pre-defined process bricks, it is simple enough to be used by
non-experts. As the level of abstraction and the used terminology are already defined
with the available process bricks, models created with PICTURE are likely to be more
standardized and comparable to each other, even if many different users were involved
in creating the models. In contrast, modelling languages like BPMN or EPC are highly
flexible and, therefore, put higher demands towards the process modeler.

DSPMLs are subject of ongoing discussion in BPM literature. Exemplarily, [8]
provides guidelines for the conception of domain-specific modeling languages, while
[17] specifies generic and meta model-based requirements. In addition, a macro process
for designing a domain-specific language is provided. In [19], different guidelines are
proposed within the categories language purpose, language realization, language
content, concrete syntax and abstract syntax. A framework for deriving DSPML from a
generic BPML is provided by [6], however a software development point of view is
taken by providing model-to-model transformation rules. To the best of our knowledge,
a framework that integrates existing knowledge in terms of DSPML development by
highlighting required building blocks has not yet been proposed.

Designing a Framework for the Development of DSPMLs 41



3 Research Design

For the conceptualization and design of a DSPML framework as primary outcome of
this contribution, the paper at hand adheres closely to the design science (DS) research
paradigm that has been predominantly introduced in the IS domain as a research
framework by [20] and which is nowadays popularized and applied in the field of IS
[21, 22]. Originated from the lack of legitimate Information Systems (IS) research
methodologies that serve the need of IS as being an “‘applied’ research discipline” [22],
the design science research approach addresses this issue by adapting design-oriented
approaches taken from related disciplines such as natural sciences or engineering to the
field of IS and thus closing the gap between IS research and practice [22, 23]. In his
three cycle view on DS, [24] characterizes DS research as an interplay of relevance,
design and rigor. The design cycle is the main cycle of DS research and iterates
between the building artifacts and evaluating them against certain requirements [24].
These requirements are considered in the relevance cycle, which connects the artifact to
the desired environment and thus determines the organizational problem to be
addressed, the intended application domain and also defines the criteria for evaluation
of the research result [24]. The rigor cycle relates the research activities with the
knowledge base. This ensures that the artifact design is grounded established foun-
dations and previous work, while also add new insights to the knowledge base [24].
Main outcome of design-centered research is an IS artifact, which may be a prototype,
but also models, methods or instantiations [20].

In literature, multiple DS research conceptualizations have been proposed, for
example the Design Science Research Cycle [25], which differentiates six phases of DS
research in an iterative DS procedure model, or Wieringa’s [26] DS framework, which is
based on work by [20] and further specifies the relationship between environment,
knowledge base and actual IS design. However, common DS approaches ultimately
incorporate a standard build-evaluate pattern, which prescribes an ex post artifact
evaluation, leading to delayed insight about the artifact’s truth resp. validity. In their
work, [27] propose a design science research approach that is applied as the research
design of this paper. In particular, the proposed approach addresses the stated issues of
the traditional build-evaluate pattern an instead introduces a more agile way of DS
evaluation. Figure 1 visualizes the design science research cycle according to [27] and
highlights the phases covered in this contribution. Essentially, the DSR cycle is divided
into two main phases, namely ex ante evaluation and ex post evaluation. Besides the
baseline DS research activities problem identification, design, construct and use, the
novelty of this approach is a separate evaluation step after each activity. Subsequently,
this allows for a meaningful evaluation even in early design stages of the artifact [27]. In
addition, the proposed DS research procedure model comes with specific guidance on
methods and criteria for each evaluation step, which we will adhere to in the following.

Adapting the framework in Fig. 1, we focus on the ex-ante phase in this paper. In
doing so, we provide a problem statement, which is evaluated by conducting an
extensive literature review, thus fulfilling evaluation step 1. As a result of both problem
statement and design objectives deducted from the review, the DSPML framework is
developed. Concluding the design step, the artifact is evaluated against the proposed

42 S. Jannaber et al.



design objectives and requirements obtained through the literature review. Hereby, we
focus on the criteria internal consistency, completeness and clarity, as mentioned by
[27]. In accordance with [24], the contribution at hand makes heavy use of existing
work included the IS knowledge base, since a consolidation of previous research effort
is extracted via a systematic literature review. The review results do not only form the
basis of the artifact’s requirements, but are also integrated as building blocks into the
final result. The presented work contributes a novel IS artifact to the knowledge base by
providing a structured framework of essential DSPML building blocks, which may
serve as a blueprint for future language design.

4 A Framework for Domain-Specific Modelling Languages

4.1 Literature Review and Design Requirements

To gather design requirements for the DSPML framework and thus query the IS
knowledge base, a systematic literature review according to [28] has been conducted
using the databases SpringerLink, Google Scholar, ScienceDirect and EbscoHost. The
search terms “*model* *develop*”, “*process* *model* *develop*”, “*process*
*language*” and “*model* *language*” have been used, as well as their German
equivalents and brief abbreviations fit each search engine’s modus operandi.

The choice of search terms has been generic on purpose, since literature specifically
addressing crucial building blocks of process modelling language development is
wide-spread across the BPM and conceptual modelling domain. Furthermore, the
contribution at hand aims providing an overview over previous work existing in the IS
knowledge base with the ultimate objective to obtain a holistic integration of the

Fig. 1. Design science research cycle according to Sonnenberg and vom Brocke [27]

Designing a Framework for the Development of DSPMLs 43



widely-spread literature on modelling language development. For this reason, the lit-
erature review has not been restricted to a specific time interval or IS journals and
conferences.

After scanning titles and abstracts of the initial review results (564), an amount of
253 publications remained, of which 97 publications were considered to be relevant.
Each publication has been assessed regarding insights on (domain specific) modelling
language requirements and integral core components of conceptual modelling lan-
guages. After consolidating and clustering the findings, 23 meta requirements that
address structure and development of DSPMLs have been identified, which serve as
design requirements for the development of the framework in Sect. 4.2. The require-
ments are depicted in Table 1. Requirements 1–14 represent requirements that directly

Table 1. Meta requirements for DSPML framework design

No. Framework design requirement Reference
(ex.)

Requirements
analysis

1 The DSPML has a defined scope and purpose [8, 17, 29]
2 The language is based on requirement analysis [8, 17, 29]
3 Stakeholder groups are considered during development [17, 29, 30]

4 Language building blocks integrate domain relevance [8, 17, 19,
31]

Language
specification

5 The modelling language is specified by a language meta model [32, 33]
6 The DSPML adheres to concrete syntax [19, 32, 33]

7 The DSPML adheres to abstract syntax [19, 32–35]
8 The language provides (formal) language semantics [32, 33]
9 The language considers modelling pragmatics [17, 36]

Development
process

10 The DSPML is a result of a systematic development approach [19, 29, 37]

Concepts, constructs
and elements

11 The language development is based on existing concepts [8, 17, 19,
29]

12 The DSPML language contains (domain-specific) modelling
constructs to represent business processes:

[8, 17, 19,
31, 35, 38]

Process elements [34, 35,
39–41]

Control flow pattern [42–46]

Resources [34, 35, 40]
Modularization [35]

13 The DSPML provides a graphical notation [17, 47]
Evaluation 14 The language is assessable regarding its quality and correctness [17, 48]
Language quality 15 Uniqueness [37]

16 Consistency [37]
17 Scalability [37]

18 Supportability [17, 37]
19 Simplicity [37, 49–51]
20 Space economy [37]

21 Reversibility [37]
22 Reliability [37]

23 Seamlessness [37]

44 S. Jannaber et al.



refer to modelling language core components that have been stated in the relevant
literature and thus need to be considered for DSPML development. Requirements
15–23 concern the resulting language itself. However, since the framework aims at
supporting the development of such languages, we argue that these result-centric
requirements need to be reflected in the DSPML framework as well.

4.2 DSPML Framework Design

On the basis of the identified requirements, a framework for the development of
domain specific process modelling languages is featured as the main IT artifact of this
paper. Figure 2 shows the fully developed DSPML framework, which sheds light on
crucial building blocks to a (domain-specific) process modelling language. Each of the
building blocks is deducted from the framework design requirements presented in
Table 1 and substantiated by corresponding literature. The DSPML framework consists
of three succeeding main phases, which are aligned as iterating layers. The require-
ments layer lays ground for the subsequent language specification and evaluation.
Initially, the development of domain specific languages requires the definition of scope
and purpose of the language to be designed [17]. Essentially, this building block
represents an initial planning phase, which on the one side details the indented value
and long-term usage of the language, since any language component needs to be
tailored towards a determined purpose [19]. On the other side, this building block also
provides for first analyses regarding the feasibility and applicability. Succeeding scope
and purpose, the identification of requirements is the core task in the requirements
layer. The framework differentiates between two types of requirements: Generic
requirements of any domain specific modelling language are closely tied to language
pragmatics and encompass for instance abstraction level [17]. In the context of process
modelling, such generic requirements also reflect necessity of a well-defined language
specification. Hence, the specification of language syntax and semantics are treated as
generic requirements that transits from the requirements layer into the language
specification layer. Specific requirements however are set to shape the language
towards the intended application domain. Exemplarily, studies demonstrate that the
financial industry [4] has fundamental different demands regarding language concept
and constructs to reflect their business domain than businesses in the chemical domain
[3]. Accordingly, any modelling language needs to reflect the concepts and constructs
relevant to their particular domain [8, 17, 19, 31]. In this paper, emphasis is also put on
the technology involved in the intended modelling effort. Primarily, this building block
refers to technical devices on which the language is applied. While literature on this
matter is still scarce, it is undisputed that both mobile [52] and wearable [53] devices
impose different requirements (e.g. limited screen size and interaction space) on pro-
cess modelling languages than traditional modelling suites running on desktop com-
puters. Each process domain is connected to a certain set of stakeholders involved.
Gaining insight into stakeholder groups is considered a crucial task for language
development [17, 29]. Potential stakeholders encompass persons involved in the lan-
guage development process, hence domain experts or language designer [17, 29, 30].
Additionally, the target audience has to be kept in mind, since in practice process

Designing a Framework for the Development of DSPMLs 45



modelling is often conducted by employees who only possess limited modelling
knowledge [54]. Influenced by both the intended application purpose and process
domain, the profitability of the development process is embedded on the requirements
layer. [29] states that every language development is associated with monetary
investment, which is also reflected in the DSML development process of [17]. [8] also
attached a profitability criterion at the evaluation layer of a modeling language.

Fig. 2. The DSPML development framework

46 S. Jannaber et al.



Succeeding the requirements layer, the DSPML has to be designed and specified
according to the elaborated requirements. The language layer consists of the two
primary components language specification and design of process elements and per-
spectives. Core of the language specification is the meta-model of DSPML to be
developed. In this case, the meta-model based specification of a modelling language
subsumes the determination of the language’s abstract and concrete syntax as well as its
semantics [32]. The abstract syntax determines and details concepts, constructs and
elements that are being used within the language [19]. The concepts, constructs and
elements defined within the language specification are detailed using a glossary and
concept directory, which is directly influenced by the process domain. Primary purpose
of the directory is to ensure that the intended domain is correctly captured by applied
terms and constructs [17].

For abstract syntax specification, language designers can draw from insight gained
in [8, 17, 19, 31, 35, 38] to determine constructs essential to a modelling language,
while maintaining a domain-driven point of view. Ultimately, decisions regarding
potential language modularization, e.g. via sub processes, have to be made at this point
in the development process [19], as well as a determination of relevant control struc-
tures to be provided by the language [43]. The concrete syntax specifies the grammar of
the determined constructs, hence their interconnection and relationships. The concrete
syntax can be represented by both textual syntax rules and the language meta-model.
Lastly, (formal) semantics are essential to modelling languages in order to provide
additional meaning to the language’s elements and to prevent ambiguity in their def-
inition. Most importantly, formal semantics are required for model automatization and
execution, thus preventing deadlocks or livelocks in the resulting process model [55].
In accordance to [37], the language specification of this framework is divided into two
development approaches: The first approach, Design, refers to a design from scratch
approach in which a new DSPML is created bottom-up. As a second approach,
Modification subsumes applicable methods to tackle language development on the
basis of already existing languages. Unification refers to the integration of languages in
order to benefit from their combined advantages. Specialization is achieved by
restricting certain aspects of the language in order to specialize a given language
towards a given purpose or domain [29]. Extension reflects the enhancement of a
modelling language in order to obtain larger expressional capabilities (e.g. BPMN
extensions provided in [13]). Lastly, Selection requires a partial usage of only a small
subset of language constructs [29]. All aforementioned methods represent different
design entry points which may also skip the requirements layer. However, all methods
provide modifications on the language meta-model, hence the framework underlines
their interconnection. Subsequent to the language specification, the definition of pro-
cess elements and their graphical notation represents the last building block of the
language layer. According to [38], relevant elements are associated with the four
different perspectives functional, behavioral, informational and organizational when
considering process modelling. Within these perspectives, concrete modelling elements
need to be deducted from the abstract syntax [31]. Finally, each identified element
needs to be assigned to a distinct graphical notation in order to enable the creation of
semi-formal process models [17].

Designing a Framework for the Development of DSPMLs 47



Following the language and element specification, the Evaluation layer aims at
assessing the language against predefined criteria with the overall purpose to identify
potential need for refinement and optimization. The initial building block of the
evaluation layer refers to the requirements criterion. Here, the specified language needs
to be checked against the generic and specific requirements that have been elaborated in
the requirements layer. For DSPML analysis, we adhere to approaches proposed in
[48]: On the one hand, qualitative and quantitative analyses are applied in order to
gather intelligence about the language’s applicability and feasibility as well as its
profitability, for example via semi-structured interview or surveys [48]. For ontological
analysis, the Bunge-Wand-Weber ontology, e.g. [56], can be used to investigate
ontological deficits within a specified language grammar [48]. In [57], the capability of
process pattern for language evaluation purposes is discussed. Henceforth, a
pattern-based analysis, for example using the workflow patterns proposed in [58], is
included. Reference and domain models are integrated into a separate building block in
order to ensure adherence to domain-specific terms and constructs as well as best
practices [59]. Lastly, although not particularly designed towards evaluating process
modelling languages, common BPM standards, such as process model quality frame-
works and modelling guidelines, can be applied. Here, the core task is to determine
whether a process model resulting from the developed DSPML framework is able to
sufficiently fulfill these quality standards. Potential quality deficit in resulting models
can thus be treated as hint for wrongly specified language building blocks. Exemplarily
frameworks are, for example, the SEQUAL framework [60]. Modelling guidelines to
take into consideration encompass for example the7PMG [61]. The results of the
evaluation layer pass into the continuous improvement cycle, since all layers are
interconnected iteratively. Depending on the detected faults and gaps, improvement can
on the requirement as well as language layer.

As carried out in Sect. 2, the proposed DSPML framework is solely limited to the
modelling language, hence it does not provide for implementation, application or
algorithms. However, modelling tool integration and application are included as
potential interfaces for further framework enhancement, directly attached to the
deliverables of the language and evaluation layer, as their outputs are likely to be
applied, whether the requirements only concern the language specification.

4.3 Evaluation and Discussion

For framework evaluation, we specifically address the criteria internal consistency,
clarity and completeness as proposed in [27]. We argue that internal consistency is
provided through the DSPML framework being deeply anchored in literature, as a
structured literature review served as the foundation for the framework building blocks.
Furthermore, additional consistency is given by the framework’s alignment to related
work in the field of language development, especially to the work of [17], whose
development workflow is being closely reflected within the framework. In terms of
clarity, we argue that the clear structure and visualization of the framework, thus the
ordering of language building blocks and their interconnection, facilitates compre-
hensibility and understandability of the language development process. Therefore,

48 S. Jannaber et al.



clarity and transparency is provided. For completeness, we again refer to the extensive
literature review that has been conducted, which, to the best of our knowledge, pro-
vides an overview over the main components that need to be considered when
developing process modelling languages. To further strengthen the argument for
completeness, the alignment of the identified requirements from literature with the
buildings blocks of our DSPML framework follows.

Meta requirement 1 (Req. 1) is fulfilled by integrating building block Scope and
Purpose (1) into the framework as preliminary planning phase. REquation 2 has been
divided into multiple building blocks. Whereas building blocks (2) and (3) cover core
requirements engineering, (4), (5) and (6) are tailored towards particular, domain-
driven requirements. In terms of stakeholder (Req. 3), we decided to integrate a des-
ignated building block (6) to embrace the importance of stakeholders to the language
development side as well as on the application side. Req. 4 is incorporated in multiple
building blocks. First, domain specific relevance is ensured by conducting specific
requirements (3) and taking characteristics of the process domain (4) into considera-
tion. These characteristics are directly translated into a corresponding concept directory
(7), which is the basis for meta-model development (Req. 5) and process element
specification. Req. 6–8 are covered by the inner core of the DSPML meta-model,
abstract syntax, concrete syntax and semantics. Req. 9 is considered in building block
(2) in an early stage of language development, since pragmatics is closely tied to
generic and stakeholder-related requirements. Req. 10 is primarily covered by building
block (9), since the language designer can choose between different development
approaches. However, the differentiation between Design and Modification also cor-
responds to this requirement. Regarding Req. 11, specifically building blocks (7) and
(9) ensure that each developed languages is to a certain degree built on existing
concepts. For once, these concepts can be referred to when determining the concept
directory of the intended domain. Additionally, each method in (9) provides that at least
one existing language is used as a basis for development. Req. 12 with its corre-
sponding sub-requirements is particularly addressed within the concept directory (7),
the meta-model specification (8) and determination of process elements (10). Designing
the framework, we refrained from integrating element-specific building blocks
(“Process elements”, “Control flow Pattern”) into the framework to maintain a
coherent abstraction level. We argue that these requirements are covered nevertheless,
because the abstract syntax specifically address constructs, concepts and elements
relevant to the intended application purpose, which is domain-specific process mod-
elling. For Req. 13, building block (10) defines both determinations of process ele-
ments as well as their visualization. Regarding Req. 14, the evaluation layer of the
framework enables various forms of language assessment, for example via ontological
analyses or alignment with domain reference models and process quality standards.
While Req. 15–20, refer to actual modelling languages, we argue that the DSPML
framework lays the foundation to develop languages that adhere to these requirements:
Regarding Req. 15, domain-specific languages are unique per nature, since they are
limited to concepts relevant to their particular domain. Additionally, sophisticated
requirements analysis, existing work in the concept directory and syntactical and
semantical formalizations ensure that there is no language overload and ambiguity.
Consistency refers to “a purpose of the design of the language” in a way that this

Designing a Framework for the Development of DSPMLs 49



purpose translates through the whole development process [37]. The framework pro-
vides a consistent blueprint to language development, since its bottom-up approach
ensures the permeation of scope and purpose throughout the development process.
Req. 17 is covered by the frameworks abstraction level and domain focus. In terms of
Req. 18, requirement analyses with a specific focus on pragmatics as well as the
formalization of the language when specifying syntax and semantic ensures that the
resulting language is both usable for humans and tools. Similar to Req. 15, Req. 19 is
covered by strict adherence to requirements, pragmatics and existing constructs to be
used. In addition, the domain-orientation ensures the usage constructs limited to the
particular domain. While space economy (Req. 20) is hard to assess, we argue that the
consideration of general requirements and pragmatics at an early development stage
steer language designers to consider this requirement during their process. The
framework is conceptualized iteratively, so that evaluation results and new insights can
be integrated into language refinement, thus covering Req. 21. Req. 22 is fulfilled in
two ways: First, the modular structure of the framework facilitates its implementation,
for instance in a language meta-modelling tool. Second, the modeling language as a
result of the framework can be implemented into common process modelling tools,
since its meta-model is formalized and processable. For Req. 23, the argumentation of
Req. 16 holds. Essentially, the strict usage of concept included in the concept directory
as well as the suggested usage of already existing constructs for abstract syntax and
element specification ensures a congruent usage of abstractions throughout the
development process.

5 Discussion and Conclusion

The DSPML framework presented in this paper consolidates and integrates existing
work in the field, and can be applied to systematize and structuring the development of
modelling languages tailored towards specific domains or technology, which is an
emerging issue in BPM. Hereby, the framework supports language designers in both
research and practice, who can draw upon the identified building blocks when devel-
oping novel, domain and technology-specific modelling languages. However, limita-
tions have to be considered: First, the framework represents a rather high-level
overview over crucial components required for language development. For actual
framework application, each building block needs to be detailed with respect to
methods or tools (e.g. meta-modelling platform) and substantiated regarding its con-
tent. Second, at this point the framework is limited to the mere modelling language
without addressing application, modelling software integration or algorithms. How-
ever, the stated areas pose additional challenges and requirements to the development
of modelling languages that are not yet reflected in the model. Furthermore, only a
descriptive evaluation is proposed. Applying the framework in practice may reveal
different requirements that have not yet been considered. Subsequently, the artifact and
its evaluation as well as the outlined limitations open up new possibilities for further
research need: On the one hand, further work need to specify and substantiate each
building block in detail regarding processed input and output as well as applied
methodologies or tool support. On the other hand, the application of the framework in

50 S. Jannaber et al.



research and practice to develop domain-specific languages will reveal valuable
insights to be incorporated into a subsequent DS iteration. An elaborate ex-post
evaluation against DSPML quality or usability criteria as well as the degree of domain
coverage may reveal the framework’s applicability from both the language designer
and resulting modelling language perspective. Furthermore, future work may enhance
the framework by taking the structure and specific characteristics of existing modeling
languages into account. Lastly, tool support that implements all layers of the frame-
work with appropriate features and software components proves to be a fruitful
expansion of the research presented.

Adhering to the applied DS methodology, this paper motivates the topic and pro-
vides a problem statement. Following a brief introduction of fundamentals, the results
of an extensive literature review are condensed into 23 design requirements that lay
ground for DSPML framework design. The evaluation demonstrates that the frame-
work sufficiently addresses the needs expressed in relevant literature. Using the pro-
posed artifact, the engineering of domain-specific process modelling languages can be
methodologically grounded, which structures and systematizes the development pro-
cess. Ultimately, this leads to an increased adequacy and quality of resulting languages,
which need to be designed towards increasingly complex requirements driven by
domain, technology and end-user.

References

1. Melenovsky, M.J.: Business process management’s success hinges on business-led
initiatives. Gart. Res. 1–6 (2005). https://www.gartner.com/doc/483847/business-process-
managements-success-hinges

2. Becker, J., Mathas, C., Winkelmann, A.: Geschäftsprozessmanagement. Springer, Heidel-
berg (2009)

3. Eggersmann, M., Krobb, C., Marquardt, W.: A modeling language for design processes in
chemical engineering. In: Laender, A.H.F., Liddle, S.W., Storey, V.C. (eds.) ER 2000.
LNCS, vol. 1920, pp. 369–382. Springer, Heidelberg (2000). doi:10.1007/3-540-45393-8_
27

4. Becker, J., Breuker, D., Weiß, B., Winkelmann, A.: Exploring the status quo of business
process modelling languages in the banking sector – an empirical insight into the usage of
methods in banks. In: ACIS 2010 Proceedings, Paper 8 (2010)

5. Harmon, P., Wolf, C.: The State of Business Process Management (2016)
6. Heitkötter, H.: A framework for creating domain-specific process modeling languages. In:

7th International Conference on Software Paradigm Trends (ICSOFT), Rome, Italy, pp. 127–
136 (2012)

7. Houy, C., Fettke, P., Loos, P., Aalst, W.M.P., Krogstie, J.: Business process management in
the large. Bus. Inf. Syst. Eng. 3, 385–388 (2011)

8. Frank, U.: Some guidelines for the conception of domain-specific modelling languages. In:
Proceedings of the 4th International Workshop on Enterprise Modelling and Information
Systems Architectures, EMISA 2011, Hamburg, Germany, 22–23 September 2011, pp. 93–
106 (2011)

9. Weske, M.: Business Process Management. Springer, Heidelberg (2012)
10. List, B., Korherr, B.: An evaluation of conceptual business process modelling languages. In:

2006 ACM Symposium on Applied Computing, pp. 1532–1539 (2006)

Designing a Framework for the Development of DSPMLs 51

https://www.gartner.com/doc/483847/business-process-managements-success-hinges
https://www.gartner.com/doc/483847/business-process-managements-success-hinges
http://dx.doi.org/10.1007/3-540-45393-8_27
http://dx.doi.org/10.1007/3-540-45393-8_27


11. Lu, R., Sadiq, S.: A survey of comparative business process modeling approaches. In:
Abramowicz, W. (ed.) BIS 2007. LNCS, vol. 4439, pp. 82–94. Springer, Heidelberg (2007).
doi:10.1007/978-3-540-72035-5_7

12. Riehle, D.M., Jannaber, S., Karhof, A., Thomas, O., Delfmann, P., Becker, J.: On the
de-facto standard of event-driven process chains: how EPC is defined in literature. In:
Modellierung 2016, Karlsruhe, 2–4 März 2016, pp. 61–76. Köllen Druck+Verlag, Bonn
(2016)

13. Braun, R., Esswein, W.: Classification of domain-specific BPMN extensions. In: Frank, U.,
Loucopoulos, P., Pastor, Ó., Petrounias, I. (eds.) PoEM 2014. LNBIP, vol. 197, pp. 42–57.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-45501-2_4

14. Object Management Group: Business Process Model and Notation (BPMN) Version 2.0
(2011). http://www.omg.org/spec/BPMN/2.0

15. Thomas, O.: Fuzzy Process Engineering. Gabler Verlag | GWV Fachverlage GmbH,
Wiesbaden (2009)

16. Becker, J., Riehle, D.M., Clever, N.: Ansätze zur Unternehmensmodellierung – Eine
Einordnung. In: Benker, T., Jürck, C., Wolf, M. (eds.) Geschäftsprozessorientierte
Systementwicklung — Von der Unternehmensarchitektur zum IT-System, pp. 415–425.
Springer, Wiesbaden (2016). doi:10.1007/978-3-658-14826-3_25

17. Frank, U.: Domain-specific modeling languages: requirements analysis and design
guidelines. In: Reinhartz-Berger, I., Sturm, A., Clark, T., Cohen, S., Bettin, J. (eds.)
Domain Engineering: Product Lines, Languages, and Conceptual Models, pp. 133–157.
Springer, Heidelberg (2013)

18. Becker, J., Algermissen, L., Falk, T.: Prozessorientierte Verwaltungsmodernisierung:
Prozessmanagement im Zeitalter von E-Government und New Public Management.
Springer, Dordrecht (2009)

19. Karsai, G., Krahn, H., Pinkernell, C., Rumpe, B., Schindler, M., Völkel, S.: Design
guidelines for domain specific languages. In: Proceedings of the 9th OOPSLA Workshop on
Domain-Specific Modelling (2009)

20. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information research.
MIS Q. 28, 75–105 (2004)

21. March, S.T., Storey, V.C.: Design science in the information systems discipline: an
introduction to the special issue on design science research. MIS Q. 32, 725–730 (2008)

22. Peffers, K., Tuunanen, T., Gengler, C.E., Rossi, M., Hui, W., Virtanen, V., Bragge, J.: The
design science research process: a model for producing and presenting information systems
research. In: Proceedings of the First International Conference on Design Science Research
in Information Systems and Technology, DESRIST 2006, vol. 24, pp. 83–106 (2006)

23. March, S.T., Smith, G.F.: Design and natural science research on information technology.
Decis. Support Syst. 15, 251–266 (1995)

24. Hevner, A.R.: A three cycle view of design science research. Scand. J. Inf. Syst. 19, 87–92
(2007)

25. Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A design science research
methodology for information systems research. J. Manag. Inf. Syst. 24, 45–77 (2008)

26. Wieringa, R.: DS as nested problem solving. In: Proceedings of the 4th International
Conference on Design Science Research in Information Systems and Technology, DESRIST
2009, Philadelphia, Pennsylvania (2009)

27. Sonnenberg, C., vom Brocke, J.: Reconsidering the Build-Evaluate Pattern in Design
Science Research. In: Proceedings of 7th Design Science Research in Information Systems
and Technology, pp. 381–397 (2012)

52 S. Jannaber et al.

http://dx.doi.org/10.1007/978-3-540-72035-5_7
http://dx.doi.org/10.1007/978-3-662-45501-2_4
http://www.omg.org/spec/BPMN/2.0
http://dx.doi.org/10.1007/978-3-658-14826-3_25


28. vom Brocke, J.M., Simons, A., Niehaves, B., Riemer, K., Plattfaut, R., Cleven, A.:
Reconstructing the giant: on the importance of rigour in documenting the literature search
process. In: 17th European Conference on Information Systems, Verona, Italy, pp. 1–13
(2013)

29. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Comput. Surv. 37, 316–344 (2005)

30. Cho, H., Gray, J., Sun, Y., White, J.: Key challenges for modeling language creation by
demonstration. In: ICSE 2011 Workshop on Flexible Modeling Tools, pp. 1–4 (2011)

31. Lin, F.-R., Yang, M.-C., Yu-Hua, P.: A generic structure for business process modeling.
Bus. Process Manag. J. 8, 19–41 (2002)

32. Clark, T., Sammut, P., Willans, J.: Applied Metamodelling. A Foundaton for Language
Driven Development (2008)

33. Klör, B., Bräuer, S., Beverungen, D., Monhof, M.: A domain-specific modeling language for
electric vehicle batteries. In: Wirtschaftsinformatik Proceedings 2015 (2015)

34. Casanova-Brito, V., Patig, S.: Requirements of process modeling languages – results from an
empirical investigation. In: Wirtschaftsinformatik Proceedings 2011, pp. 756–765 (2011)

35. Zamli, K.Z., Ashidi, N., Isa, M.: A survey and analysis of process modeling languages.
Malays. J. Comput. Sci. 17, 68–89 (2004)

36. Seel, C.: Reverse Method Engineering: Methode und Softwareunterstützung zur Konstruk-
tion und Adaption semiformaler Informationsmodellierungstechniken. Logos Verlag, Berlin
(2010)

37. Paige, R.F., Ostroff, J.S., Brooke, P.J.: Principles for modeling language design. Inf. Softw.
Technol. 42, 665–675 (2000)

38. Curtis, B., Kellner, M.I., Over, J.: Process modeling. Commun. ACM 35, 75–90 (1992)
39. de Cesare, S., Serrano, A.: Collaborative modeling using UML and business process

simulation. In: Proceedings of the 39th Annual Hawaii International Conference on System
Sciences (HICSS 2006), pp. 1–10 (2006)

40. Derniame, J.-C., Kaba, B.A., Wastell, D.: The software process: modelling and technology.
In: Derniame, J.-C., Kaba, B.A., Wastell, D. (eds.) Software Process: Principles, Method-
ology, and Technology. LNCS, vol. 1500, pp. 1–13. Springer, Heidelberg (1999). doi:10.
1007/3-540-49205-4_1

41. Chou, S.-C.: A process modeling language consisting of high level UML diagrams and low
level process language. J. Object Technol. 1, 137–163 (2002)

42. Figl, K., Mendling, J., Strembeck, M., Recker, J.: On the cognitive effectiveness of routing
symbols in process modeling languages. In: Abramowicz, W., Tolksdorf, R. (eds.) BIS 2010.
LNBIP, vol. 47, pp. 230–241. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12814-
1_20

43. Pichler, H., Eder, J.: Business process modeling and workflow design. In: Embley, D.W.,
Thalheim, B. (eds.) Handbook of Conceptual Modeling, pp. 259–286. Springer, Heidelberg
(2011)

44. Wohed, P., van der Aalst, W.M.P., Dumas, M., ter Hofstede, A.H.M., Russell, N.: On the
suitability of BPMN for business process modelling. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.
P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 161–176. Springer, Heidelberg (2006). doi:10.
1007/11841760_12

45. Schmidt, G., Braun, O.: Process language GPN. In: Bernus, P., Mertins, K., Schmidt, G.
(eds.) Handbook on Architectures of Information Systems, pp. 197–214. Springer,
Heidelberg (2006)

Designing a Framework for the Development of DSPMLs 53

http://dx.doi.org/10.1007/3-540-49205-4_1
http://dx.doi.org/10.1007/3-540-49205-4_1
http://dx.doi.org/10.1007/978-3-642-12814-1_20
http://dx.doi.org/10.1007/978-3-642-12814-1_20
http://dx.doi.org/10.1007/11841760_12
http://dx.doi.org/10.1007/11841760_12


46. van Hee, K.M., Sidorova, N., van der Werf, J.M.: Business process modeling using petri
nets. In: Jensen, K., Aalst, W.M.P., Balbo, G., Koutny, M., Wolf, K. (eds.) Transactions on
Petri Nets and Other Models of Concurrency VII. LNCS, vol. 7480, pp. 116–161. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-38143-0_4

47. Schalles, C., Creagh, J., Rebstock, M.: A causal model for analyzing the impact of graphical
modeling languages on usability. Int. J. Softw. Eng. Knowl. Eng. 24, 1337–1355 (2014)

48. Recker, J.: Evaluations of Process Modeling Grammars: Ontological, Qualitative and
Quantitative Analyses Using the Example of BPMN. Springer, Heidelberg (2011)

49. Conradi, R., Liu, C.: Process modelling languages: one or many? In: Schäfer, W. (ed.)
EWSPT 1995. LNCS, vol. 913, pp. 98–118. Springer, Heidelberg (1995). doi:10.1007/3-
540-59205-9_47

50. Atkinson, D.C., Weeks, D.C., Noll, J.: The design of evolutionary process modeling
languages. In: 11th Asia-Pacific Software Engineering Conference, pp. 73–82 (2004)

51. Luo, W., Tung, Y.A.: A framework for selecting business process modeling methods. Ind.
Manag. Data Syst. 99, 312–319 (1999)

52. Kolb, J., Rudner, B., Reichert, M.: Towards gesture-based process modeling on multi-touch
devices. In: Bajec, M., Eder, J. (eds.) CAiSE 2012. LNBIP, vol. 112, pp. 280–293. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-31069-0_24

53. Metzger, D., Niemöller, C., Berkemeier, L., Brenning, L., Thomas, O.: Vom Techniker zum
Modellierer - Konzeption und Entwicklung eines Smart Glasses Systems zur Laufzeitmod-
ellierung von Dienstleistungsprozessen. In: Thomas, O., Nüttgens, M., Fellmann, M. (eds.)
Smart Service Engineering, pp. 193–213. Springer, Heidelberg (2017)

54. Recker, J.: Opportunities and constraints: the current struggle with BPMN. Bus. Process
Manag. J. 16, 181–201 (2010)

55. Fellmann, M., Bittmann, S., Karhof, A., Stolze, C., Thomas, O.: Do we need a standard for
EPC modelling? The state of syntactic, semantic and pragmatic quality. Lecture Notes
Informatics (LNI), vol. P-222, pp. 103–117. Gesellschaft fur Inform (2013)

56. Wand, Y., Weber, R.: On the ontological expressiveness of information systems analysis and
design grammars. Inf. Syst. J. 3, 217–237 (1993)

57. Recker, J., Rosemann, M., Krogstie, J.: Ontology- versus pattern-based evaluation of process
modeling languages: a comparison. Commun. AIS. 20, 774–799 (2007)

58. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Workflow
patterns. Distrib. Parallel Databases 14, 5–51 (2003)

59. La Rosa, M., Gottschalk, F., Dumas, M., Van Der Aalst, W.M.P.: Linking domain models
and process models for reference model configuration. In: Hofstede, A., Benatallah, B., Paik,
H.-Y. (eds.) BPM 2007. LNCS, vol. 4928, pp. 417–430. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-78238-4_43

60. Krogstie, J., Sindre, G., Jørgensen, H.: Process models representing knowledge for action: a
revised quality framework. Eur. J. Inf. Syst. 15, 91–102 (2006)

61. Mendling, J., Reijers, H.A., van der Aalst, W.M.P.: Seven process modeling guidelines
(7PMG). Inf. Softw. Technol. 52(2), 127–136 (2010)

54 S. Jannaber et al.

http://dx.doi.org/10.1007/978-3-642-38143-0_4
http://dx.doi.org/10.1007/3-540-59205-9_47
http://dx.doi.org/10.1007/3-540-59205-9_47
http://dx.doi.org/10.1007/978-3-642-31069-0_24
http://dx.doi.org/10.1007/978-3-540-78238-4_43

	Designing a Framework for the Development of Domain-Specific Process Modelling Languages
	Abstract
	1 Introduction
	2 BPM and Domain-Specific Process Modelling
	3 Research Design
	4 A Framework for Domain-Specific Modelling Languages
	4.1 Literature Review and Design Requirements
	4.2 DSPML Framework Design
	4.3 Evaluation and Discussion

	5 Discussion and Conclusion
	References


